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Abstract
We examine the effect of the initial atomic momentum distribution on the
dynamics of the atom-optical realization of the quantum kicked rotor. The
atoms are kicked by a pulsed optical lattice, the periodicity of which implies
that quasi-momentum is conserved in the transport problem. We study and
compare experimentally and theoretically two resonant limits of the kicked
rotor: in the vicinity of the quantum resonances and in the semiclassical limit
of the vanishing kicking period. It is found that for the same experimental
distribution of quasi-momenta, significant deviations from the kicked rotor
model are induced close to quantum resonance, while close to the classical
resonance (i.e. for a small kicking period) the effect of the quasi-momentum
vanishes.

PACS numbers: 42.50.Vk, 32.80.Qk, 05.45.Mt, 05.60.−k

1. Introduction

The past decade has brought fascinating advances in the preparation and control of single
particles [1]. Atoms can now be cooled down to a level where the effect of a single photon
recoil can be measured experimentally [2]. Single atom dynamics can thus be controlled with
a high precision by introducing an external field in the form of an optical potential [3, 4].

A particular example of such a system, the atom-optics kicked rotor, has shed light
on interesting and paradigmatic quantum effects including dynamical localization [3] and
quantum resonance [5–8]. In all such experiments, control of the initial conditions in phase
space is essential. In particular, the impact of different momentum classes on the dynamics
near quantum resonance was explained recently [9, 10]. The atoms are kicked by a spatially
periodic potential which is pulsed on at a certain frequency. As dictated by the standard
Bloch theory, the spatial periodicity implies that the quasi-momentum for the centre-of-mass
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motion of each atom is conserved during the evolution. Quasi-momentum is an intrinsically
quantum variable which arises due to the translational symmetry of the problem [11]. Since
experiments with cold atoms typically use a broad, continuous distribution of quasi-momenta,
the experimental data represent a result averaged over this initial distribution [9, 10, 12, 13].

The averaging over different momentum classes leads to significant deviations from the
standard δ-kicked rotor model [14, 15] which typically does not consider the additional control
parameter introduced by the quasi-momentum. Such deviations have been experimentally
observed, in particular at quantum resonance [9] and have been explained theoretically by
means of a new pseudo-classical model introduced in [16] and applied to the usual δ-kicked
rotor in [10, 17].

In this paper, we use the same theoretical formalism to expose the innate similarities
and surprising differences between the limit in which the exact quantum resonant driving is
approached and the limit of vanishing kicking period. The former limit can be described using
the pseudo-classical model from [10, 17] (with an effective Planck constant defined by the
detuning from exact resonance), whilst the latter limit is the usual classical limit of the kicked
rotor (with the scaled kicking period as the effective Planck constant). Our theoretical analysis
of the experimental data focuses on the role of the quasi-momentum, which proves to be quite
different in the two ‘classical’ limits studied here.

2. The atom-optics kicked rotor

We consider a system of caesium atoms in an optical standing wave (with wave number kL)
which is δ-pulsed with period τ . For sufficiently large detuning from the atomic absorption
line, the Hamiltonian for an atom is given by [18]

H(t ′) = p2

2
+ k cos(z)

N∑
t=0

δ(t ′ − tτ ), (1)

where p is the atomic momentum in units of 2h̄kL (i.e., in units of two-photon recoils), z is
the atomic position in units of 2kL, t ′ is time and t is the kick number. The scaled kicking
period τ is defined by the equation τ = 8ERT/h̄, where ER = h̄2k2

L

/
2M is the recoil energy

(associated with the energy change of a caesium atom of mass M after emission of a photon
of wavelength λL = 2π/kL = 852 nm). The kicking strength of the system is given by
k = V0τ/h̄ where V0 is the maximum potential depth created by the optical standing wave
[3, 18].

Experimentally, momentum kicks are delivered to the atoms by an optical lattice which
is created by a 150 mW diode laser injection locked to a lower power feedback stabilized
source at 852 nm. Kicking laser powers of up to 30 mW were employed for detunings of
500 MHz from the 6S1/2(F = 4) → 6P3/2(F

′ = 5) transition of caesium. For the
experimental results presented in this paper, the average energy of the atomic ensemble
was measured after up to 20 kicks. To control the pulse timing, a custom-built programmable
pulse generator was employed to gate an acousto-optic modulator which controlled the amount
of kicking light reaching the atomic sample. Timing of the experiment was controlled by a
real-time, software based computer system with a latency on the order of 10 µs.

For the classical resonance experiments reported here, the kicking pulse width was 320 ns,
whilst for the quantum resonance results, a 480 ns pulse width was used. In the classical limit
of vanishing kicking period, the δ-kick approximation is violated in the experiment (although
for the small kick numbers and kicking strengths used here, our results do not show deviations
from the δ-kick theory [19–21]). As a consequence, it is possible to probe the dynamics at
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exact quantum resonance, but not at the exact classical limit, since the pulse period τ should
always exceed the pulse width to ensure a reliable approximation to δ-pulses.

The experimental sequence ran as follows: atoms were released from the magneto-optical
trap [2] and then kicked by a series of light pulses. A free expansion time of 12 ms was then
allowed followed by ‘freezing’ of the atomic motion in optical molasses and subsequent CCD
imaging of the resultant atomic cloud [8]. Mean energies are extracted from the raw data by
calculating the second moment of the experimentally measured momentum distribution of the
atoms’ centre-of-mass motion.

By exploiting the spatial periodicity of the Hamiltonian (1), the atomic dynamics along
the z-axis can be reduced to that of a rotor on a circle by Bloch’s theorem [10]. This introduces
the additional parameter β ∈ [0, 1) which represents the atomic quasi-momentum—a constant
of the motion by Bloch’s theorem. The fractional part of the physical momentum p in the units
given above corresponds to the quasi-momentum which is practically uniformly distributed
in the fundamental Brillouin zone defined by the periodic kick potential [10]. The one-kick
propagation operator for a given atom is [10]

Ûβ = e−ik cos(θ̂ )e−iτ(N̂+β)2/2, (2)

where θ = x mod(2π), and N̂ = −id/dθ is the angular momentum operator with periodic
boundary conditions.

3. Unifying classical description of quantum and classical resonance

The quantum dynamics in the two semiclassical limits studied here is approximated by the
following map [12, 17]:

It+1 = It + k̃ sin(θt+1), θt+1 = θt ± It + �π + τβ mod(2π), (3)

where τ = 2π� + ε and k̃ = k|ε|, and � = 0, 1, 2 (± is the sign of ε, and for � = 0 only
+ is allowed). The above map is similar to the well-studied standard map [22] augmented
by the term τβ which accounts for the experimental quasi-momentum distribution. Changing
variables to J = ±I + �π + τβ, ϑ = θ + π(1 − sign(ε))/2 formally gives the true standard
map

Jt+1 = Jt + k̃ sin(ϑt+1), ϑt+1 = ϑt + Jt . (4)

The mean energy is calculated using the formula

〈Et,ε〉 = ε−2
〈
I 2
t

〉 /
2 = ε−2

〈
δJ 2

t

〉 /
2, δJt = Jt − J0. (5)

Although the map (4) is not explicitly dependent on the additional β-dependent term, we note
that the initial conditions in momentum space are given by J0 = ±I0 + π� + τβ, i.e., they are
defined by the initial choice of quasi-momentum β.

Two a priori quite different regimes are described by either of the two maps (3) or (4):
firstly that for � = 0 and τ → 0, and secondly that for � > 0, τ → 2π�, for the integer �. In
the case where � = 0 we have ε = τ and J = τp, with the physical momentum p in units
of two-photon recoils [12]. For the integer � > 0, the map in (4) approximates the dynamics
near the fundamental quantum resonances occurring at τ = 2π�. As shown in [10, 17], the
one-kick propagator (2) may be rewritten in the form

Ûβ(t) = e−ik̃ cos(θ̂ )/|ε| e−iĤβ/|ε|, (6)

where ε = τ − 2π�, k̃ = |ε| k, Î = |ε| N̂ and Ĥ β = 1
2 sign(ε)Î 2 + Î (π� + τβ). Considering

|ε| to be an effective Planck constant, we see that the map given in equation (3) approximates
the dynamics induced by (2) in both classical limits for ε → 0.
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Figure 1. A phase-space portrait generated by the map (4) for k = 2.5 and ε = 0.05. The initial
angles θ0 were uniformly distributed in [0, 2π) whilst the initial momenta J0 were taken from
uniform distributions on the two different intervals [0, ε) (a) and [π, 3π + ε) (b) as shown by the
arrows in both figures. Note that the phase space is 2π -periodic along the J -axis.

Figure 1 demonstrates the essential difference between the two semiclassical limits studied
here. In the case where � = 0 (see figure 1(a)), a uniform quasi-momentum distribution on
[0, 1) leads to the initial momenta J0 being uniformly distributed on the interval [0, σpε),
where σp is the characteristic width of the initial atomic momentum distribution in units of
two-photon recoils. Therefore, for σp ∼ 1, the initial momenta lie entirely within the region
of phase space dominated by the nonlinear resonance island of the standard map. For � = 1
(see figure 1(b)), and the same uniform quasi-momentum distribution, the initial momenta
populate the full unit cell [π, 3π) in the periodic phase space which encompasses not only the
nonlinear resonance island at J = 2π , but also regular ‘rotation’ motion beyond it. Therefore
the same experimental quasi-momentum distribution leads to different behaviour of the atomic
ensemble in the two limits of � = 0 and � �= 0.

On the basis of the maps (3) and (4), useful results were previously derived for the
analysis of experimental data [12, 17]. These results may be summarized by the following
single-parameter scaling functions which differ for the two limits of interest here. For � = 0,
the scaling function of the mean energy close to ε = τ = 0 is given by

〈Et,τ 〉
〈Et,0〉 ≈ Rcl(x) ≡ 2

x2
Gcl(x), (7)

with x = t
√

k |ε| and the function Gcl defined by

Gcl(x) ≈ 1

2π

∫ 2π

0
dθ0 J (x, θ0, J0 = 0)2, (8)

where J ≡ J/
√

k̃ is the momentum of the pendulum approximation to the dynamics generated
by the map of equation (3) as defined previously in [10, 17].

For � > 0, we have instead close to ε = 0

〈Et,ε〉
〈Et,0〉 ≈ Rq(x) ≡ 1 − �0(x) +

4

πx
Gq(x), (9)
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Figure 2. The ratio Gcl/Gq (solid line) is shown along with the functions Gcl (dashed line) and
Gq (dotted line) themselves. The ratio saturates to a constant for a large x after initial oscillations,
as the classical and quantum resonance peaks decay at the same rate. The differences between the
two scaling functions arise due to the different initial conditions in phase space in the classical and
ε-classical limits (see figure 1).

with different functions �0 and Gq . In this case, we have

Gq(x) ≈ 1

8π

∫ 2π

0
dθ0

∫ 2

−2
dJ0 J (x, θ0, J0)

2. (10)

The difference between the two scaling functions Gcl and Gq may be seen in figure 2 where
the ratio of the two functions is plotted along with the functions themselves. Although the
functions have the same slope for small x, their forms differ in general and for a large x, the
ratio saturates to a constant less than 1. The difference in the saturation values of the two G
functions arises from the different initial conditions in the phase space of map (3) which apply
in the classical and ε-classical limits.

In the following section, we compare experimental data for the two different cases � = 0
and � = 1, 2 guided by the theoretical results reviewed in the present section.

4. Experimental versus theoretical results

In figure 3, experimentally measured energies close to the classical and quantum resonances
are plotted against the kick number. In both plots of this figure, the observed oscillatory
behaviour may be understood in terms of the pendulum approximation to the dynamics of the
map (4) as embodied by the functions Gcl(x) or Gq(x) [10, 12, 17, 23]. For small times (t < 5
for the data in figure 3(a)), the energy growth near the classical resonance is ballistic, i.e., the
energy grows quadratically in time.

We note that ballistic motion is also predicted to occur at quantum resonance for an
atomic ensemble with a very narrow initial momentum distribution [24, 25]. But the broad
initial momentum distribution present in cold atom experiments as discussed here, typically
leads to a uniform distribution of all possible values of quasi-momentum [9, 10]. In terms
of the classical model reviewed in the previous section, these experimental initial conditions
correspond to initial momenta distributed over the full phase-space cell, as shown in figure 1(b).
The majority of the atoms obey rotational motion with almost constant energies (see
figure 1(b)), whilst only a small sub-class follows the motion inside the nonlinear resonance
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Figure 3. Experimental measurements of the mean energy as a function of kick number for k ≈ 5,
taken for small values of the detuning ε in the limits τ → 0 (a) and ε → 0 for � = 1 (b). In
particular, we have (a) ε = 0.033 (circles) and ε ≈ 0.08 (squares), and (b) |ε| � 0.005 (circles)
and ε ≈ 0.08 (squares), along with classical simulations using the map (4) (dashed lines). We
note the oscillatory nature of the energy curve for finite detuning ε, which may be viewed as a
consequence of the dynamics represented by the phase spaces in figure 1. The inset in (a) shows
a detailed experimental scan of the classical resonance peak as τ = ε → 0, for k ≈ 2.5 and after
t = 5 kicks.

island, which for a finite time (depending on the detuning ε) supports ballistic energy growth
[10, 17].

The connection between the dynamics in the classical limit and that for a quantum particle
starting from a momentum eigenstate is found in the term τβ in the map (3). We see that this
term may become zero in either of the following limits: τ → 0 or β → 0. In both cases, the
effect is to regain ballistic energy growth. The inset in figure 3(a) shows a detailed scan of
the mean energy near the classical resonance as τ → 0 which emphasizes the rapid energy
growth seen in this regime associated with the ballistic classical resonance.

Figure 3(b) shows mean-energy measurements at exact quantum resonance (circles)
and for ε ≈ 0.08 along with ε-classical simulation results (dashed lines). For the same
experimental momentum distribution, only linear mean-energy growth is predicted to occur at
exact quantum resonance. Additionally, the data shown here demonstrate a practical problem
which arises from the uniform distribution of quasi-momenta over the first Brillouin zone.
Because only the quasi-momentum classes β ≈ 1/2 (for � = 1) and β ≈ 0, 1/2 (for � = 2)
experience quantum resonant dynamics [9, 10, 15], only a small number of resonant atoms are
responsible for the linear growth of the ensemble mean energy. The measurement of the mean
energy at exact quantum resonance is therefore experimentally very challenging since the
signal-to-noise ratio is low for the small population of resonant atoms [5, 7, 9, 10]. This is the
most likely cause of the apparent saturation of energy growth in the quantum resonance case as
seen in figure 3(b) where the experimental mean energy (circles) noticeably deviates from the
expected linear growth (dashed line). Indeed, an inspection of the experimental momentum
distributions for the on-resonance data reveals that the characteristic ballistic wings associated
with resonant atoms [9] are not resolved for kick numbers greater than about 6 in these
experiments.

By comparison with the data in figure 3(a) for the classical resonance, we see that, even
though the maximum energy is much larger than that measured at quantum resonance for the
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Figure 4. Rescaled experimental mean energies near classical resonance (circles), and the quantum
resonances at τ = 2π and 4π (squares). In particular, the circles for x � 3 are rescaled data from
the inset of figure 3(a). The mean energies have been scaled by the theoretical peak height of the
resonances, i.e., by k2t2/4 for the classical resonance [12] and k2t/4 for the quantum resonance
data [10, 17]. The scaling functions for the classical (7) and quantum resonances (9) are shown as
a solid line and a dashed line, respectively. The narrower width of the classical resonance peak is
immediately apparent. This figure also shows the utility of the scaling function in the comparison
of data which is meaningful in the scaled units even for a wide range of the three parameters: here
for k ≈ 2.5 and k ≈ 5 (� = 0) and k = 5 (� = 1, 2), 0.033 � ε � 0.1 (� = 0) and 0.03 � ε < 0.3
(� = 1, 2) and 3 � t � 16. Error bars represent statistical fluctuations over three independent
experiments.

same number of kicks, the initial quadratic mean-energy growth can easily be resolved since
practically the entire atomic ensemble experiences resonant energy growth in this regime. This
is precisely because as τ tends to zero, the β dependence of the map (3) is removed as the
term τβ vanishes at the same rate as τ .

Finally, figure 4 shows rescaled data from experimental measurements for various
experimental parameters with � = 0 (circles) and � = 1, 2 (squares). The data taken in the
classical case (� = 0) fall on or close to the classical scaling function (solid line in figure 3)
and that, likewise, the data taken for � = 1, 2 falls on or near the quantum scaling curve
(dash-dotted line). The narrower nature of the classical resonance peak is emphasized by this
plot. The dense set of points (circles) shown for x � 3 in the classical case come from the data
shown in the inset of figure 3(a). These data provide a detailed confirmation of the classical
scaling function’s validity for smaller values of x than previously observed experimentally
[23]. Somewhat surprisingly, it is found that the δ-kicked rotor theory holds even in a regime
of x for which the spacing between kicking pulses is comparable to the width of the pulses
themselves [12]. The smallest value of the kicking period τ for which the δ-kicked model
remained valid in these experiments was τ = 0.033 which, for a kicking strength k ≈ 5 and
t = 5, corresponds to x ≈ 2. For the larger x, the data points show more scatter because of
systematic fluctuations in the initial momentum spread and the difficulty in observing the peak
very close to resonance for a larger number of kicks [23].

5. Conclusion

We have demonstrated the effect of averaging over a uniform quasi-momentum distribution in
two different semiclassical limits of the atom-optics kicked rotor. For the same experimental
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quasi-momentum distribution, the true classical limit gives rise to ballistic energy growth
whereas in the pseudo-classical limit approximating quantum resonance only linear growth
occurs.

This difference is explained by considering the inclusion of the quasi-momentum-
dependent term τβ in the theoretical description. If this term approaches zero, which may be
accomplished either by performing the classical limit τ → 0 or starting with a very narrow
momentum distribution such as that provided by a Bose–Einstein condensate [25], ballistic
energy growth is recovered. However, for standard atom-optics kicked rotor experiments
using cold atoms only linear energy growth is predicted at quantum resonance since the
quasi-momentum β is uniformly distributed in the entire Brillouin zone.

The classical theory of section 3 of the near resonant dynamics thus unifies the description
of quantum and classical resonance behaviour of the atom-optics kicked rotor, and is elegantly
summarized by two classical one-parameter scaling laws for the classical and quantum
resonance peaks. These laws are very useful for a detailed analysis of experimental results in
regimes in which measurements are limited by the signal-to-noise ratio.
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